
Data Analytics with Python
Quick Start Guide

A step-by-step tutorial covering pandas, numpy,
and data visualization basics

By Ayoolumi Melehon
ayofemimelehon.com



1. Setting Up Your Environment
Installing Python
Download Python from python.org or use Anaconda (recommended for data science).

Installing Required Libraries
pip install pandas numpy matplotlib seaborn jupyter

Starting Jupyter Notebook
jupyter notebook

This opens a browser where you can write and run Python code interactively.

Importing Libraries
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

■ Convention: We use 'pd' for pandas and 'np' for numpy. You'll see this everywhere.

2. Pandas Fundamentals
Creating a DataFrame

# From a dictionary

data = {

'Name': ['Alice', 'Bob', 'Charlie'],

'Age': [25, 30, 35],

'City': ['London', 'Paris', 'Berlin']

}

df = pd.DataFrame(data)

print(df)

Reading Data from Files
# CSV file

df = pd.read_csv('data.csv')

# Excel file

df = pd.read_excel('data.xlsx')

# With options

df = pd.read_csv('data.csv', sep=',', header=0, encoding='utf-8')

Exploring Your Data
df.head() # First 5 rows

df.tail(10) # Last 10 rows

df.shape # (rows, columns)

df.info() # Column types and null counts

df.describe() # Statistics for numeric columns

df.columns # Column names

df.dtypes # Data types



3. Selecting & Filtering Data
Selecting Columns

# Single column (returns Series)

df['Name']

# Multiple columns (returns DataFrame)

df[['Name', 'Age']]

# Using dot notation (single column)

df.Name

Selecting Rows
# By index position (iloc)

df.iloc[0] # First row

df.iloc[0:5] # First 5 rows

df.iloc[-1] # Last row

# By label (loc)

df.loc[0] # Row with index 0

df.loc[0:5, 'Name'] # Rows 0-5, Name column

Filtering with Conditions
# Single condition

df[df['Age'] > 25]

# Multiple conditions (AND)

df[(df['Age'] > 25) & (df['City'] == 'London')]

# Multiple conditions (OR)

df[(df['City'] == 'London') | (df['City'] == 'Paris')]

# Using isin()

df[df['City'].isin(['London', 'Paris'])]

# String contains

df[df['Name'].str.contains('Ali')]

■ Always wrap conditions in parentheses and use & for AND, | for OR.

4. Data Manipulation
Adding New Columns

# Simple assignment

df['Country'] = 'UK'

# Based on calculation

df['Age_in_10_years'] = df['Age'] + 10

# Based on condition

df['Is_Adult'] = df['Age'] >= 18

Modifying Values
# Replace values

df['City'].replace('London', 'Greater London', inplace=True)

# Using loc for specific rows

df.loc[df['Age'] > 30, 'Category'] = 'Senior'



Handling Missing Data
# Check for missing values

df.isnull().sum()

# Drop rows with any missing values

df.dropna()

# Fill missing values

df['Age'].fillna(df['Age'].mean(), inplace=True)

df['City'].fillna('Unknown', inplace=True)



5. Grouping & Aggregation
Basic Aggregations

df['Sales'].sum() # Total

df['Sales'].mean() # Average

df['Sales'].median() # Median

df['Sales'].min() # Minimum

df['Sales'].max() # Maximum

df['Sales'].count() # Count (non-null)

df['Sales'].std() # Standard deviation

Group By
# Single column grouping

df.groupby('City')['Sales'].sum()

# Multiple aggregations

df.groupby('City')['Sales'].agg(['sum', 'mean', 'count'])

# Multiple columns

df.groupby(['City', 'Year'])['Sales'].sum()

# Different aggregations per column

df.groupby('City').agg({

'Sales': 'sum',

'Customers': 'count',

'Profit': 'mean'

})

Pivot Tables
pd.pivot_table(

df,

values='Sales',

index='City',

columns='Year',

aggfunc='sum'

)

6. NumPy Essentials
Creating Arrays

arr = np.array([1, 2, 3, 4, 5])

zeros = np.zeros(10) # Array of zeros

ones = np.ones((3, 4)) # 3x4 matrix of ones

range_arr = np.arange(0, 10, 2) # [0, 2, 4, 6, 8]

linspace = np.linspace(0, 1, 5) # 5 evenly spaced from 0-1

Array Operations
arr * 2 # Multiply all by 2

arr + 10 # Add 10 to all

arr ** 2 # Square all

np.sqrt(arr) # Square root

np.log(arr) # Natural log

# Statistics

arr.mean(), arr.std(), arr.min(), arr.max()



7. Data Visualization
Basic Plots with Matplotlib

# Line plot

plt.plot(df['Date'], df['Sales'])

plt.xlabel('Date')

plt.ylabel('Sales')

plt.title('Sales Over Time')

plt.show()

# Bar chart

plt.bar(df['Category'], df['Sales'])

plt.show()

# Histogram

plt.hist(df['Age'], bins=10)

plt.show()

# Scatter plot

plt.scatter(df['Age'], df['Income'])

plt.show()

Better Plots with Seaborn
# Distribution plot

sns.histplot(df['Sales'], kde=True)

# Box plot

sns.boxplot(x='Category', y='Sales', data=df)

# Scatter with regression line

sns.regplot(x='Age', y='Income', data=df)

# Heatmap (correlation matrix)

sns.heatmap(df.corr(), annot=True, cmap='coolwarm')

# Count plot (bar chart for categories)

sns.countplot(x='City', data=df)

Customizing Plots
# Figure size

plt.figure(figsize=(10, 6))

# Style

sns.set_style('whitegrid')

# Colors

plt.plot(x, y, color='teal', linewidth=2)

# Save figure

plt.savefig('my_plot.png', dpi=300, bbox_inches='tight')

8. Complete Example: Sales Analysis
# Load data

df = pd.read_csv('sales_data.csv')

# Quick exploration

print(df.head())

print(df.info())



# Clean data

df.dropna(inplace=True)

df['Date'] = pd.to_datetime(df['Date'])

# Add month column

df['Month'] = df['Date'].dt.month

# Monthly sales summary

monthly_sales = df.groupby('Month')['Revenue'].agg(['sum', 'mean', 'count'])

print(monthly_sales)

# Top 5 products

top_products = df.groupby('Product')['Revenue'].sum().nlargest(5)

print(top_products)

# Visualize

plt.figure(figsize=(10, 5))

sns.barplot(x=top_products.index, y=top_products.values)

plt.title('Top 5 Products by Revenue')

plt.ylabel('Revenue (£)')

plt.xticks(rotation=45)

plt.tight_layout()

plt.savefig('top_products.png')

plt.show()

■ Practice makes perfect! Try these techniques on your own datasets.

Created by Ayoolumi Melehon | ayofemimelehon.com
© 2026 | Free to use and share


