SQSL for Data Anal¥sts

sential Queries & Commands Cheat Sheet

m BASIC QUERIES

SELECT - Retrieve Data

SELECT col um1, colum?2 FROM t abl e_nane;
SELECT * FROM custoners; -- Al colums
SELECT DI STINCT city FROM customers; -- Unique val ues

WHERE - Filter Results

SELECT * FROM orders WHERE status = 'conpleted' ;
SELECT * FROM products WHERE price > 100;
SELECT * FROM users WHERE created_at >= '2024-01-01';

ORDER BY - Sort Results

SELECT * FROM products ORDER BY price ASC;
SELECT * FROM products ORDER BY price DESC;
SELECT * FROM sal es ORDER BY date DESC, anmpunt DESC,

LIMIT - Restrict Rows

SELECT * FROM custoners LIMT 10;
SELECT * FROM orders ORDER BY total DESC LIMT 5; -- Top 5

m FILTERING & CONDITIONS

Comparison Operators

Equal to <> Not equal to
G eater than >= Geater or equal
Less than <= Less or equal

AN VoIl

Logical Operators

SELECT * FROM orders WHERE status = 'shipped’ AND total > 100;
SELECT * FROM products WHERE category = 'El ectronics' OR category = 'Books';
SELECT * FROM users WHERE NOT country = 'USA';

IN, BETWEEN, LIKE

SELECT * FROM orders WHERE status IN (' pending', 'processing');
SELECT * FROM products WHERE price BETWEEN 50 AND 200;

SELECT * FROM custoners WHERE nane LIKE 'John%; -- Starts with John
SELECT * FROM custoners WHERE emai| LIKE ' %@nail.com; -- Ends with

NULL Handling

SELECT * FROM custoners WHERE phone |'S NULL;
SELECT * FROM orders WHERE shi pped_date |I'S NOT NULL;
SELECT COALESCE(phone, 'No phone') FROM custoners; -- Default val ue

B AGGREGATION FUNCTIONS

Common Aggregates

SELECT COUNT(*) FROM orders; -- Count all rows

SELECT COUNT(DI STI NCT custoner _i d) FROM orders; -- Count uni que
SELECT SUM anpunt) FROM transacti ons;

SELECT AVE price) FROM products;

SELECT M N(price), MAX(price) FROM products;

GROUP BY - Aggregate by Category

SELECT category, COUNT(*) as product_count
FROM pr oduct s
GROUP BY cat egory;

SELECT custoner_id, SUMtotal) as total _spent
FROM or der s

GROUP BY custoner_id

ORDER BY total _spent DESC;

HAVING - Filter Aggregated Results

SELECT custoner_id, COUNT(*) as order_count

FROM or der s

GROUP BY customer _id

HAVI NG COUNT(*) > 5; -- Custoners with nore than 5 orders

m JOINS

INNER JOIN - Matching rows only

SELECT orders.id, custoners.nane, orders.total
FROM or ders
INNER JO N custonmers ON orders. custoner_id = custoners.id;

LEFT JOIN - All from left + matches

SELECT custoners. nane, orders.id

FROM cust oner s

LEFT JO N orders ON custoners.id = orders. custoner_id;

-- Includes custoners with no orders (NULL for order col ums)

RIGHT JOIN - All from right + matches

SELECT custoners. nane, orders.id
FROM cust oner s
RI GHT JO N orders ON customers.id = orders. customer_id;

Multiple Joins

SELECT o0.id, c.nane, p.product_name, oi.quantity
FROM orders o

JO N custonmers ¢ ON o.custoner_id =c.id

JO N order_itens oi ONo.id = oi.order_id

JO N products p ON oi.product_id = p.id;

m SUBQUERIES & CTEs

Subquery in WHERE

SELECT * FROM products
VWHERE price > (SELECT AV price) FROM products);

SELECT * FROM cust oners
WHERE id IN (SELECT custoner_id FROM orders WHERE total > 1000);

Common Table Expression (CTE)

W TH hi gh_val ue_customers AS (

SELECT custoner_id, SUMtotal) as total _spent
FROM or ders

GROUP BY customer _id

HAVI NG SUM total) > 10000

SELECT c. nanme, hvc.total _spent
FROM hi gh_val ue_cust oners hvc
JA N custonmers ¢ ON hvc.custoner_id = c.id;

m WINDOW FUNCTIONS

ROW_NUMBER, RANK, DENSE_RANK

SELECT nane, departnent, salary,

ROW NUMBER() OVER (ORDER BY sal ary DESC) as row_num
RANK() OVER (ORDER BY sal ary DESC) as rank,
DENSE_RANK() OVER (ORDER BY sal ary DESC) as dense_rank
FROM enpl oyees;

Partition By - Window within groups

SELECT nane, departnent, salary,

RANK() OVER (PARTI TI ON BY departnent ORDER BY sal ary DESC) as dept_rank
FROM enpl oyees;

-- Ranks enpl oyees w thin each departnent

Running Totals & Moving Averages

SELECT date, armount,
SUM anmpbunt) OVER (ORDER BY date) as running_total,

AVG anmount) OVER (ORDER BY date ROWS 6 PRECEDI NG as 7_day_avg
FROM dai | y_sal es;

m DATE FUNCTIONS

Common Date Operations

SELECT CURRENT_DATE; -- Today's date

SELECT CURRENT_TI MESTAMP; -- Current datetine

SELECT DATE PART('year', order_date); -- Extract year
SELECT DATE _TRUNC(' nonth', order_date); -- Truncate to nonth
SELECT order_date + | NTERVAL ' 30 days'; -- Add 30 days
SELECT AGE(end_date, start_date); -- Difference

Group by Time Periods

-- Monthly sal es

SELECT DATE_TRUNC(' nonth', order_date) as nonth,
SUMtotal) as monthly_sal es

FROM or ders

GROUP BY DATE_TRUNC(' nonth', order_date)

ORDER BY nont h;

m STRING FUNCTIONS

SELECT UPPER(nane), LOWER(enmil) FROM custoners;

SELECT CONCAT(first_nane, ' ', last_nanme) as full_name FROM users;
SELECT SUBSTRI NG phone, 1, 3) as area_code FROM contacts;
SELECT TRI M nane) FROM products; -- Renpbve whitespace

SELECT LENGTH(descri ption) FROM products;
SELECT REPLACE(text, 'old', 'new) FROM docunents;

m CASE STATEMENTS

SELECT nane, price,

CASE

WHEN price < 50 THEN ' Budget'
WHEN price < 200 THEN ' M d-range'
ELSE ' Prem um

END as price_tier

FROM pr oduct s;

-- Conditional aggregation
SELECT

COUNT(CASE WHEN st at us
COUNT(CASE WHEN st at us
FROM or ders;

‘conpleted” THEN 1 END) as conpl et ed,
"pending’ THEN 1 END) as pendi ng

[Im DATA MODIFICATION

INSERT

I NSERT | NTO custoners (nane, enmil) VALUES ('John', 'john@nwsil.coni);
I NSERT | NTO orders (customer_id, total)
SELECT id, 0 FROM custonmers WHERE status = 'new ;

UPDATE

UPDATE products SET price = price * 1.1 WHERE category = 'El ectronics';
UPDATE orders SET status = 'shipped" WHERE id = 123;

DELETE

DELETE FROM orders WHERE status = 'cancell ed';
DELETE FROM | ogs WHERE created_at < '2023-01-01';

m PERFORMANCE TIPS

Tip Why

Use SELECT columns instead of SELECT * Reduces data transfer

Add indexes on WHERE columns Speeds up filtering

Use EXPLAIN ANALYZE Understand query performance
Avoid functions on indexed columns Prevents index usage

Use LIMIT for large datasets Reduces memory usage

Filter early with WHERE Reduces rows to process

Created by Ayoolumi Melehon | ayofemimelehon.com
Data Analyst & Al Developer | Free to use and share

