
SQL for Data Analysts
Essential Queries & Commands Cheat Sheet

■ BASIC QUERIES

SELECT - Retrieve Data

SELECT column1, column2 FROM table_name;
SELECT * FROM customers; -- All columns
SELECT DISTINCT city FROM customers; -- Unique values

WHERE - Filter Results

SELECT * FROM orders WHERE status = 'completed';
SELECT * FROM products WHERE price > 100;
SELECT * FROM users WHERE created_at >= '2024-01-01';

ORDER BY - Sort Results

SELECT * FROM products ORDER BY price ASC;
SELECT * FROM products ORDER BY price DESC;
SELECT * FROM sales ORDER BY date DESC, amount DESC;

LIMIT - Restrict Rows

SELECT * FROM customers LIMIT 10;
SELECT * FROM orders ORDER BY total DESC LIMIT 5; -- Top 5

■ FILTERING & CONDITIONS

Comparison Operators

= Equal to <> Not equal to
> Greater than >= Greater or equal
< Less than <= Less or equal

Logical Operators

SELECT * FROM orders WHERE status = 'shipped' AND total > 100;
SELECT * FROM products WHERE category = 'Electronics' OR category = 'Books';
SELECT * FROM users WHERE NOT country = 'USA';

IN, BETWEEN, LIKE

SELECT * FROM orders WHERE status IN ('pending', 'processing');
SELECT * FROM products WHERE price BETWEEN 50 AND 200;
SELECT * FROM customers WHERE name LIKE 'John%'; -- Starts with John
SELECT * FROM customers WHERE email LIKE '%@gmail.com'; -- Ends with

NULL Handling

SELECT * FROM customers WHERE phone IS NULL;
SELECT * FROM orders WHERE shipped_date IS NOT NULL;
SELECT COALESCE(phone, 'No phone') FROM customers; -- Default value

■ AGGREGATION FUNCTIONS

Common Aggregates

SELECT COUNT(*) FROM orders; -- Count all rows
SELECT COUNT(DISTINCT customer_id) FROM orders; -- Count unique
SELECT SUM(amount) FROM transactions;
SELECT AVG(price) FROM products;
SELECT MIN(price), MAX(price) FROM products;



GROUP BY - Aggregate by Category

SELECT category, COUNT(*) as product_count
FROM products
GROUP BY category;

SELECT customer_id, SUM(total) as total_spent
FROM orders
GROUP BY customer_id
ORDER BY total_spent DESC;

HAVING - Filter Aggregated Results

SELECT customer_id, COUNT(*) as order_count
FROM orders
GROUP BY customer_id
HAVING COUNT(*) > 5; -- Customers with more than 5 orders



■ JOINS

INNER JOIN - Matching rows only

SELECT orders.id, customers.name, orders.total
FROM orders
INNER JOIN customers ON orders.customer_id = customers.id;

LEFT JOIN - All from left + matches

SELECT customers.name, orders.id
FROM customers
LEFT JOIN orders ON customers.id = orders.customer_id;
-- Includes customers with no orders (NULL for order columns)

RIGHT JOIN - All from right + matches

SELECT customers.name, orders.id
FROM customers
RIGHT JOIN orders ON customers.id = orders.customer_id;

Multiple Joins

SELECT o.id, c.name, p.product_name, oi.quantity
FROM orders o
JOIN customers c ON o.customer_id = c.id
JOIN order_items oi ON o.id = oi.order_id
JOIN products p ON oi.product_id = p.id;

■ SUBQUERIES & CTEs

Subquery in WHERE

SELECT * FROM products
WHERE price > (SELECT AVG(price) FROM products);

SELECT * FROM customers
WHERE id IN (SELECT customer_id FROM orders WHERE total > 1000);

Common Table Expression (CTE)

WITH high_value_customers AS (
SELECT customer_id, SUM(total) as total_spent
FROM orders
GROUP BY customer_id
HAVING SUM(total) > 10000
)
SELECT c.name, hvc.total_spent
FROM high_value_customers hvc
JOIN customers c ON hvc.customer_id = c.id;

■ WINDOW FUNCTIONS

ROW_NUMBER, RANK, DENSE_RANK

SELECT name, department, salary,
ROW_NUMBER() OVER (ORDER BY salary DESC) as row_num,
RANK() OVER (ORDER BY salary DESC) as rank,
DENSE_RANK() OVER (ORDER BY salary DESC) as dense_rank
FROM employees;

Partition By - Window within groups

SELECT name, department, salary,
RANK() OVER (PARTITION BY department ORDER BY salary DESC) as dept_rank
FROM employees;
-- Ranks employees within each department

Running Totals & Moving Averages

SELECT date, amount,
SUM(amount) OVER (ORDER BY date) as running_total,



AVG(amount) OVER (ORDER BY date ROWS 6 PRECEDING) as 7_day_avg
FROM daily_sales;

■ DATE FUNCTIONS

Common Date Operations

SELECT CURRENT_DATE; -- Today's date
SELECT CURRENT_TIMESTAMP; -- Current datetime
SELECT DATE_PART('year', order_date); -- Extract year
SELECT DATE_TRUNC('month', order_date); -- Truncate to month
SELECT order_date + INTERVAL '30 days'; -- Add 30 days
SELECT AGE(end_date, start_date); -- Difference

Group by Time Periods

-- Monthly sales
SELECT DATE_TRUNC('month', order_date) as month,
SUM(total) as monthly_sales
FROM orders
GROUP BY DATE_TRUNC('month', order_date)
ORDER BY month;

■ STRING FUNCTIONS

SELECT UPPER(name), LOWER(email) FROM customers;
SELECT CONCAT(first_name, ' ', last_name) as full_name FROM users;
SELECT SUBSTRING(phone, 1, 3) as area_code FROM contacts;
SELECT TRIM(name) FROM products; -- Remove whitespace
SELECT LENGTH(description) FROM products;
SELECT REPLACE(text, 'old', 'new') FROM documents;

■ CASE STATEMENTS

SELECT name, price,
CASE
WHEN price < 50 THEN 'Budget'
WHEN price < 200 THEN 'Mid-range'
ELSE 'Premium'
END as price_tier
FROM products;

-- Conditional aggregation
SELECT
COUNT(CASE WHEN status = 'completed' THEN 1 END) as completed,
COUNT(CASE WHEN status = 'pending' THEN 1 END) as pending
FROM orders;



✏■ DATA MODIFICATION

INSERT

INSERT INTO customers (name, email) VALUES ('John', 'john@email.com');
INSERT INTO orders (customer_id, total)
SELECT id, 0 FROM customers WHERE status = 'new';

UPDATE

UPDATE products SET price = price * 1.1 WHERE category = 'Electronics';
UPDATE orders SET status = 'shipped' WHERE id = 123;

DELETE

DELETE FROM orders WHERE status = 'cancelled';
DELETE FROM logs WHERE created_at < '2023-01-01';

■ PERFORMANCE TIPS

Tip Why

Use SELECT columns instead of SELECT * Reduces data transfer

Add indexes on WHERE columns Speeds up filtering

Use EXPLAIN ANALYZE Understand query performance

Avoid functions on indexed columns Prevents index usage

Use LIMIT for large datasets Reduces memory usage

Filter early with WHERE Reduces rows to process

Created by Ayoolumi Melehon | ayofemimelehon.com
Data Analyst & AI Developer | Free to use and share


